National Inventors Hall of Fame

Is the Internet old or new? According to MIT professor of mathematics Tom Leighton, co-founder of Akamai, the internet is just getting started. His opinion counts since his firm, launched in 1998 with pivotal help from Danny Lewin SM ’98, keeps the internet speedy by copying and channeling massive amounts of data into orderly and secure places that are quick to access. Now, the National Inventors Hall of Fame (NIHF) has recognized Leighton and Lewin’s work, naming them both as 2017 inductees.

“We think about the internet and the tremendous accomplishments that have been made and, the exciting thing is, it’s in its infancy,” Leighton says in an Akamai video. Online commerce, which has grown rapidly and is now denting mall sales, has huge potential, especially as dual screen use grows. Soon mobile devices will link to television, and then viewers can change channels on their mobile phones and click to buy the cool sunglasses Tom Cruise is wearing on the big screen. “We are going to see [that] things we never thought about existing will be core to our lives within 10 years, using the internet,” Leighton says.

Leighton’s former collaborator, Danny Lewin, was pivotal to the early development of Akamai’s technology. Tragically, Lewin died as a passenger on an American Airlines flight that was hijacked by terrorists and crashed into New York’s World Trade Center on Sept. 11, 2001. Lewin, a former Israeli Defense Forces officer, is credited with trying to stop the attack.

According to Akami, Leighton, Lewin, and their team “developed the mathematical algorithms necessary to intelligently route and replicate content over a large network of distributed servers,” which solved congestion that was then becoming known as the “World Wide Wait.” Today the company delivers nearly 3 trillion internet interactions each day.

The NIHF describes Leighton and Lewin’s contributions as pivotal to making the web fast, secure, and reliable. Their tools were applied mathematics and algorithms, and they focused on congested nodes identified by Tim Berners-Lee, inventor of the World Wide Web and an MIT professor with an office near Leighton. Leighton, an authority on parallel algorithms for network applications who earned his PhD at MIT, holds more than 40 U.S. patents involving content delivery, internet protocols, algorithms for networks, cryptography, and digital rights management. He served as Akamai’s chief scientist for 14 years before becoming chief executive officer in 2013.

Automation and mobility combines

Daniela Rus loves Singapore. As the MIT professor sits down in her Frank Gehry-designed office in Cambridge, Massachusetts, to talk about her research conducted in Singapore, her face starts to relax in a big smile.

Her story with Singapore started in the summer of 2010, when she made her first visit to one of the most futuristic and forward-looking cities in the world. “It was love at first sight,” says the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science and the director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). That summer, she came to Singapore to join the Singapore-MIT Alliance for Research and Technology (SMART) as the first principal investigator in residence for the Future of Urban Mobility Research Program.

“In 2010, nobody was talking about autonomous driving. We were pioneers in developing and deploying the first mobility on demand for people with self-driving golf buggies,” says Rus. “And look where we stand today! Every single car maker is investing millions of dollars to advance autonomous driving. Singapore did not hesitate to provide us, at an early stage, with all the financial, logistical, and transportation resources to facilitate our work.”

Since her first visit, Rus has returned each year to follow up on the research, and has been involved in leading revolutionary projects for the future of urban mobility. “Our team worked tremendously hard on self-driving technologies, and we are now presenting a wide range of different devices that allow autonomous and secure mobility,” she says. “Our objective today is to make taking a driverless car for a spin as easy as programming a smartphone. A simple interaction between the human and machine will provide a transportation butler.”

The first mobility devices her team worked on were self-driving golf buggies. Two years ago, these buggies advanced to a point where the group decided to open them to the public in a trial that lasted one week at the Chinese Gardens, an idea facilitated by Singapore’s Land and Transportation Agency (LTA). Over the course of a week, more than 500 people booked rides from the comfort of their homes, and came to the Chinese Gardens at the designated time and spot to experience mobility-on-demand with robots.

The test was conducted around winding paths trafficked by pedestrians, bicyclists, and the occasional monitor lizard. The experiments also tested an online booking system that enabled visitors to schedule pickups and drop-offs around the garden, automatically routing and redeploying the vehicles to accommodate all the requests. The public’s response was joyful and positive, and this brought the team renewed enthusiasm to take the technology to the next level.